
LESSONS LEARNED IN DEVELOPING MULTIPLE
DISTRIBUTED PLANNING SYSTEMS FOR THE INTERNATIONAL

SPACE STATION

Theresa G. Maxwell

National Aeronautics and Space Administration (NASA)
Mission Support Systems Group (Mail Code: FD42)

Ground Systems Department
Flight Projects Directorate

Marshall Space Flight Center, Alabama 3581 2
E-mil: theresa. maxwell @ ms fc. nasa. gov

ABSTRACT

The planning processes for the International Space Station (ISS) Program are quite complex. Detailed
mission planning for ISS on-orbit operations is a distributed function. Pieces of the on-orbit plan are
developed by multiple planning organizations, located around the world, based on their respective
expertise and responsibilities. The “pieces” are then integrated to yield the final detailed plan that will
be executed onboard the ISS. Previous space programs have not distributed the planning and scheduling
functions to this extent. Major ISS planning organizations are’currently located in the United States (at
both the NASA Johnson Space Center (JSC) and NASA Marshall Space Flight Center (MSFC)), in
Russia, in Europe, and in Japan.

Software systems have been developed by each of these planning organizations to support their assigned
planning and scheduling functions. Although there is some cooperative development and sharing of key
software components, each planning system has been tailored to meet the unique requirements and
operational environment of the facility in which it operates. However, all the systems must operate in a
coordinated fashion in order to effectively and eficiently produce a single integrated plan of ISS
operations, in accordance with the established planning processes.

This paper addresses lessons learned during the development of these multiple distributed planning
systems, from the perspective of the developer of one of the software systems. The lessons focus on the
coordination required to allow the multiple systems to operate together, rather than on the problems
associated with the development of any particular system. Included in the paper is a discussion of typical
problems faced during the development and coordination process, such as incompatible development
schedules, difficulties in defining system interfaces, technical coordination and funding for shared tools,
continually evolving planning conceptdrequirement, programmatic and budget issues, and external
influences. Techniques that mitigated some of these problems will also be addressed, along with
recommendations for any future programs involving the development of multiple planning and
scheduling systems. Many of these lessons learned are not unique to the area of planning and scheduling
systems, so may be applied to other distributed ground systems that must operate in concert to
successfully support space mission operations.

1

1.0 INTRODUCTION

“HE I S DISTRIBUTED PLANNING PROCESS

A “distributed planning” process allows multiple organizations to participate in the development of a
single integrated plan. Detailed mission planning for ISS on-orbit operations is a highly distributed
function, whereby pieces of the on-orbit plan are developed by multiple planning organizations, located
around the world, based on their respective expertise and responsibilities. The “pieces” are then
integrated to yield the final detailed plan (timeline) that will be executed onboard the ISS.

Major ISS planning organizations are provided by NASA Johnson Space Center (JSC), NASA Marshall
Space Flight Center (hlSFC), the Russian Aviation and Space Agency (RASA), European Space Agency
(ESA), and National Space Development Agency of Japan (NASDA). The Canadian Space Agency
(CSA) participates in the ISS planning process, but does not actually develop portions of the plan.

RASA, ESA, and NASDA control centers develop the plans associated with the ISS systems and
payloads that those agencies provide. Within NASA, JSC develops the U.S. systems plans and MSFC
develops the U.S. payload plans. JSC and MSFC also perform integration of the multiple plans. MSFC
integrates the payload plans. JSC integrates the systems plans, and performs overall integration of the
systems and payload plans. Figure 1 graphically depicts these responsibilities for the pre-increment
planning products. See Reference #1 for more detail on this distributed planning process.

Figure 1 Pre-Increment Execute Planning Product Tree

2

THE NEED FOR MULTIPLE PLANNING SYSTEMS

Software systems have been developed by each of these planning organizations to support their assigned
planning and scheduling functions. Although there is some cooperative development and sharing of key
software components, each planning system has been tailored to meet the unique requirements and
operational environment of the facility in which it operates. For example, differences in the systems may
be driven by control center interfaces, unique product needs, language considerations, or the need to be
accessible by remote payload users. Figure 2 shows the major ISS planning systems, and their locations.

Figure 2 I S Planning Systems

COORDINATION CHALLENGES

The distributed planning systems must effectively work together to produce a single integrated plan for
ISS onboard operations, in accordance with the established planning processes. Close coordination of
system requirements, interfaces, implementation, and developmentldeployment schedules is therefore
mandatory. Unfortunately, this coordination is complicated, either directly or indirectly, by a number of
factors that are inherent in a very large, multi-national endeavor, such as the International Space Station:

*

The various systems are controlled by different political andor organizational entities, so may have
different funding sources or budget cycles.
There are unique operating environments and requirements at each site.
Some systems must support multiple programs. For example, the JSC Integrated Planning System
supports both the ISS and Space Shuttle programs.
Each system has a different development schedule.
On an international development effort, must consider the geographical distribution of the various
development organizations, language differences, and export control issues.
Planning systems are highly dependent on many external factors, such as changes in p l d g
concepts, onboard systems, and other ground systems.

3

2.0 LESSONS LEARNED

The lessons learned in this paper are from the perspective of a developer of one of the planning systems
- the Payload Planning System (PPS) at Marshall Space Flight Center. They are based primarily on the
author’s experiences and observations while working on this planning system for the past 15 years,
although some of the lessons are based on inputs from Johnson Space Center (see Acknowledgements).
The developers of other systems, as well as the ISS operations community (the software users) may have
additional lessons that are not reflected here. Also, these lessons focus on the coordination necessary to
make the various systems work together in an integrated fashion, not on the actual development of any
particular software system. For the reader who is also interested in lessons learned pertaining to the
development of a particular planning system, there is a complementary paper in this conference dealing
with the lessons leamd in developing the Consolidated Planning System (CPS) (See Reference a).

The lessons are grouped into five major categories: Planning Concepts and System Requirements,
Sharing of Tools, Interface Definition and Control, Coordination of Development Efforts, and Applying
Changes Across Systems.

PLANNING CONCEPTS AND SYSTEM REQUIREMENTS

The distributed planning concepts for the ISS are a major requirements driver for the various planning
and scheduling systems. The planning concepts define the distribution of planning functions to each site,
as well as the detailed planning processes, templates, and products. Each planning system must support
the planning functions allocated to the site at which it operates. Unfortunately, the ISS planning
concepts have evolved significantly and continually over the life of the Program, and continue to do so.
On a major long-term program such as ISS, with multiple planning participants, complex political and
budgetary considerations, and a continuously operating vehicle, this volatility is to be expected.

LESSON LEARNED: Recognize that ulannindowrations conceuts will change. and ulan accordingly.
As planning concepts have evolved, software requirements have had to change accordingly. Sometimes,
the changes have impacted software that was well into development, thereby requiring significant
software rework, with resultant cost/schedule impacts. Programs need to:

Plan for this u n c e d t y in planning system budgets and schedules. Consider a phased system
development, which will allow rework of requirements as the concepts change. Provide adequate
sustaining budgets to accommodate the inevitable changes in planning concepts.
Design the software to be as flexible as possible. Avoid implementing very specific operations
concepts into the software. Provide for flexibility in functionality as well as in report formats to
minimize rework when the concepts do change.

0

LESSON LEARNED: Involve the software users in all uhases of develor>ment.
Active involvement of the software users, throughout the development cycle, will allow changes in
planning concepts and requirements to be captured as early as possible. It will also ensure that the
subsequent software implementation (functionality/user interfaces) meets their needs, prior to final
software release.

LESSON LEARNED: A m on reauirements allocations across system as early as uossible.
Need to define the basic functions that each system will implement as early as possible, so that the
individual systems can proceed with development. The requirements allocation across systems is
generally based on the specific planning functions to be performed at each site, which makes the

4

allocation fairly straightforward. However, there are circumstances in which a specific function could be
assigned to one of several planning systems. For example, on ISS, the MSFC Payload Planning System
contains some software provided by the JSC Integrated Planning System. Decisions on which system
would implement certain payload planning functions were unresolved for quite some time, resulting in
cost/schedule impacts to the PPS when the functions were finally added to the PPS very late in its
development cycle.

LESSON LEARNED: Make f m decisions on languages early in the requirements phase.
In a multi-national program, decisions on which languages to support must be made early. For example,
the ISS program originally had a requirement to conduct all operations in English. Years later, a
decision was made to support Russian Cyrillic in many tools and products, including the planning system
products. Unfortunately, by this time, the planning systems development was quite far along, and the
Cyrillic requirement could not be accommodated without significant cost and schedule impacts. Because
of budget limitations, some systems have been updated for Cyrillic, and others have not. Any software
disconnects due to Cyrillic are being managed via operational workarounds and other means. If the
Cyrillic requirement had been defined much earlier, these impacts could have been minimized.

SHARING OF TOOLS

Sharing of tools occurs when software developed for one planning system is included as a component of
another system. Sharing is possible when two different systems must implement very similar functions,
but may or may not be practical due to operational or hardware differences, language considerations, etc.
On ISS, the various planning systems developed by MSFC, RASA, ESA, and NASDA, are all utilizing
the Consolidated Planning System (CPS) component of the JSC IPS to some degree. The CPS provides
capabilities needed to perform the detailed scheduling of the ISS on-orbit activities.

LESSON LEARNED: Sharing of tools can yield significant benefits.
For the ISS program, the adoption of the CPS as the common scheduling tool provided several benefits:

Scheduling tools are generally quite complex, and therefore costly, so sharing of these tools has the
potential to reduce overall program costs.
Sharing of tools promotes commonality across systems. This is especially true when the shared
component is the sch&uling tool, which is typically the heart of a planning system. The design of
the scheduler usually determines how data is modeled throughout a planning system. Therefore,
sharing of this key component across systems promotes commonality in data modeling, which may
in turn simplify the interface definition.
Commonality benefits the software end-users. The planning personnel, located at control centers
around the world, can refer to common displays and data when coordinating their planning activities.
Utilization of a common tool forces the various planning system developers to coordinate even more
closely than they might have otherwise done.

LESSON LEARNED: SharinP of tools rewires compromise.
Complications arise when multiple parties must share a common tool. Each party has unique
requirements and expectations on the software development, which must be accommodated. Sometimes,
these conflict. (See reference #2 for additional discussion on this topic.)

All parties must be willing to live with additional complexity in the tool in order to realize the
benefits of tool sharing. Extra complexity is introduced as numerous parties’ unique requirements
are accommodated. For example, the ISS program requires capabilities, data, or displays in CPS not

5

needed by the Shuttle program, and vice versa. Also, other planning systems may levy unique
requirements on the shared tool (e.g., additional data parameters) to allow it to effectively operate in
conjunction with their other components. MSFC has levied many unique requirements on the C P S .
All parties must be willing to compromise when debating and prioritizing proposed changes to the
shared software.
All parties must realize that they will not get everything they want, when they want it, and may have
to accept things they don’t particularly like.

0

LESSON LEARNED. Multi-party fundmp of common tools can facilitate reauirements satisfaction.
For example, when MSFC adopted JSC’s CPS as its scheduling tool, it did not meet all the MSFC unique
requirements. MSFC‘s requirements were folded into the ongoing CPS development, but the MSFC
requirements could n d compete with the more immediate needs of the JSC Space Shuttle and ISS
systems planners. When it became apparent that the MSFC needs could not be accommodated within the
baseline budgevschedule, the ISS program allocated additional funds to the CPS project specifically for
the implementation of the MSFC payload planning requirements. From the MSFC perspective, this
worked out very well. Having some separate funding under the control of each planning community
mitigated the inevitable conflicts over implementation prioritiedschedules, and facilitated the
satisfaction of the MSFC requirements.

LESSON LEARNED: Decide on tool sharinp early in the development process.
For example, the CPS tool was adopted as the scheduling tool in the Payload Planning System after the
system was already well into development. This necessitated a major rework of the PPS design, because
the CPS data structures were quite different &om the existing PPS data. The PPS system development
did not fully recover from t h i s late impact for several years.

LESSON LEARNED: Need fonnal mechanisms for coordinating common tool development.
With multiple parties relying on a common tool, formal coordination mechanisms are needed to ensure
that all parties have adequate participation in its development. Participation is needed in requirements
definition, review and approval of proposed changes, design reviews, software testing, and problem
reporting and prioritization. With the ISS program, these processes evolved over many years. The
processes for reviewing and approving CPS changes are formally baselined in a Work Instruction under
the control of the Groundsegment Control Board (GSCB). See Reference #3.

LESSON LEARNED: Need an established exwrt control mxess, with prouerlv trained uersonnel.
With international software sharing, export control issues must be considered. Export control applies to
software, hardware, documentation, videotapes, and even Web pages. Having a welldocumented export
control process, with trained personnel and clear points of contact, allows timecritical shipments to be
made on schedule.

INTERFACE DEFINITION AND CONTROL

The interface definition controls the content and format of the data to be exchanged between the various
planning systems, so it is the key to success. Good processes for defining and controlling the interface
are therefore crucial.

LESSON LEARNED: IT security issues may drive the interface, so address them early on.
Each planning system is associated with an ISS ground control center, which dictates a certain level of
Information Technology (rr) security and access control. These constraints may force the planning

6

systems I.ito a particular means of data exchange (e.g., file exchange via drop boxes, rather than direct
database-to-database communications), so address them as early as possible.

LESSON LEARNED: Get formal ameement from all parties on the interface definition.
Obviously, all development organizations must commit to meet the defined interface, or disconnects
between the systems may occur. Establish a process that allows all parties to review and approve any
change to the interface definition before it is implemented, to ensure that each system can accommodate
the change. Also keep in mind that any bilateral agreements require multilateral review and approval.

For ISS, the interface definition is designed around the CPS data structures, since the CPS tool is shared
across multiple systems. Because of that, in the early years, the interface definition was basically
controlled by the CPS development organization, but the ISS program has gradually evolved to a
multilateral process, which seems to work better. The formal Interface Control Document (ICD) for the
ISS planning systems is the Multilateral Distributed Planning Interface Specification (MUDPIS). It is
baselined under the authority of the GSCB, which has multilateral representation. See Reference #4.

LESSON LEARNED: ICD development must s u ~ m r t development schedules for all systems.
Adequate time must be provided between ICD baselining and software coding/deployment. The ICD
development schedules should be laid out carefully to ensure that no system is forced to accommodate an
interface change late in a development cycle. This is complicated by the fact that all the systems have
different schedules. Before the ISS program established standard review processes for the MUDPIS ICD,
such schedule disconnects did cause some impacts to ongoing development activities. In addition, the
standard ICD review cycles must accommodate the internal review processes at each center. The right
balance must be found between the need for more review time, and the need to get the document out in
time to meet the various development schedules.

LESSON LEARNED: Beware an interface definition that is explicitly tied to one application.
For ISS, the interface files are explicitly tied to the internal CPS database structures. This allowed for a
fairly quicwcheap implementation, but such tight coupling can cause complications. For example, data
used only by the CPS application, such as display formats, i s an integral part of the interface def~t ion ,
and must be dealt with by the other systems. Therefore, changes in this data can force a change in the
interface definition, even if - no other planning systems utilize the data.

LJ3SSON LEARNED: Document data intem-itv rules in the I O .
The ICD must document data integrity rules. This is to prevent “bad” data from entering the system.
The data integrity rules include items such as mandatory data fields, value constraints on specific fields,
or relationships between data elements. Missing rules caused problems for ISS more than once.

LESSON LEARNED: Document standards for usercontrolled data.
In planning systems, the creation and naming of the planning data is under the control of the software
user. This is because the activities to be planned, and the resourcedconditions which constrain the
planning function, are different for every flight/mission. But since these names are often identifying
keys that the planning systems use to process and integrate the various plans, they must be consistent
across all the systems. Such information should not go into the software ICD for several reasons: it is
rather dynamic, and it is under the control of the software users, rather than the developers. For ISS,
these data standards are baselined under the auspices of the Execute Planning Control Panel (ExPCP), a
multilateral panel representing each of the distributed planning organizations. See Reference #5.

7

COORDINATION OF DEVELOPMENT EFFORTS

For the distributed planning systems to effectively work together, close coordination of the independent
’ development efforts is mandatory.

*

LESSON LEARNED Establish regular communications forums to facilitate effective coordination.
Need to establish mechanisms that promote regular communications, such as monthly telecons, e-mail,
and periodic face-to-face meetings. With ISS, the various parties are geographically distributed across
the globe, so communications must consider time zone and language differences.

LESSON LEARNED: Encourage particiuation in each other’s technical reviews.
Such participation wa‘s not as extensive as it could have been for ISS, but where it was done, it was
extremely beneficial. From the PPS perspective, detailed technical participation in the development of
the common CPS tool provided an indepth understanding of the CPS capabilities, interface definition,
and associated implications on the PPS system. Therefore, any potential disconnects between the two
systems could be quickly identified and resolved. Also, such participation is a great way to share ideas.

LESSON LFiARNED: Need strong integration function to lead the coordination.
Need one party to serve as the prime coordinator, responsible for setting up and implementing the day-
to-day coordination processes. NASA JSC assumed this role for ISS. Also need a formal authority with
multilateral representation to overseelapprove the coordinated plans. For ISS, this is the GSCB.

LESSON LEARNED: Need clear avenues for issue resolution.
Need to clearly identify pathdforums for resolving any issues that may arise, whether in the development
process, or on into operations. Existing program board structures can be utilized for this purpose.

LESSON LEARNED: Need mechanisms to negotiate develooment/deuloyment schedules.
Establish mechanisms to negotiate and document key schedule milestones. This provides long-term
visibility into the schedules, for planning purposes, and provides some level of commitment to the
negotiated schedules. Address all critical events which impact more than one system, such as ICD
completion dates, and system deployment dates. The individual systems can then plan their own
development schedules around these milestones. For ISS, these agreements are documented in a
Planning Facility Scheduk document (Reference #6), which is under the control of the GSCB.

LESSON LEAFWED Decouule develoDment schedules to the extent uossible.
Developmentldeployment schedules for the various systems are not likely to line up, for many reasons.
This can cause major problems when the interface definition changes. For example, the Payload
Planning System once had to add an extra (unplanned) build in order to maintain compatibility with the
JSC system when it deployed upgraded software (containing interface changes). This resulted in a
cost/schedule impact to the PPS. It is therefore of utmost importance to find some mechanism which
allows the schedules for the various systems to be decoupled. The ISS program utilizes the concepts of
“sync points” and “backward compatibility”, which appear to work quite well.

A sync point is represented by a specific version of the interface definition, which all parties have agreed
to meet for data exchange. Later versions of the interface definition may exist, but no system is required
to utilize the later version, until it is declared to be the next sync point by the entire planning community.
All the development organizations must then agree on the schedule for upgrading their software to meet
the new sync point. A “no-later-than” date is established, by which each system must be upgraded.
During the transition period, the old sync point interface defhtion is still valid, and data can be

8

exchanged in either format. In other words, the software is backward compatible with the previous sync
point. For ISS, the agreements on sync points and upgrade/deployment schedules are documented in the
Planning Facility Schedules document (Reference #6).

LESSON LEARNED. Coordinate Dlatform and COTS requirements as far out as uossible.
This coordination is mandatory when sharing software tools, to prevent any “surprises” that might
impact schedules. Identify any platform and COTS (Commercial Off-The-Shelf software) requirements
as early as possible to accommodate the long lead times needed for procurements and installation.

LFBSON LEARNED: Joint testing is reuuired for successful checkout of the software.
To ensure that the various systems effectively work together, plan for some joint testing where data is
flowed through all the systems. Enlist the participation of the user organizations in performing an end-
to-end test of the distributed planning process, to simulate the operational environment.

LESSON LEARNED. Joint effort is reuuired to resolve operational problems.
When problems arise in the operational environment, a responsive developmenther team is needed to
identify, diagnose, and resolve the problems. Keep in mind that a problem may manifest in one system,
but really be caused by another (e.g., through the exchange of “bad” data).

APPLYING CHANGES ACROSS SYSTEMS

Because of the interdependence of the distributed planning systems, changes tend to ripple from one
system to the next. It is therefore of critical importance to coordinate and manage these changes. Many
external factors can force changes in the planning systems, including the planning concepts, which have
already been discussed. By their nature, planning systems are also quite sensitive to changes in onboard
systems and other ground systems, such as operations control centers. This is because they either model
those systems, for planning purposes, or have software interfaces for the exchange of planning data.

LESSON LEARNED: ADmovdfund changes across ALL affected Dlanning; systems.
When the distributed systems have different funding sources, as they do on ISS, it is always possible that
a change may be approvdfmded for one system, but not for others. A prime example of this is the
implementation of Russian - Cyrillic, which was funded for some, but not all, planning systems.

LEESON LEARNED: Consider imDacts to Dlanninrr systems when changinp onboard systems.
Impacts to planning systems are not always considered when changes to onboard systems are Wing
assessed. Any impacts to the planning systems should be identified and funded at the same time the
onboard change is approved.

3.0 CONCLUSIONS AND RECOMMENDATIONS

The International Space Station Rogram has successfully demonstrated that it is possible to develop
multiple planning systems that operate together in the development of a single integrated plan. However,
the road to success has not been straight or smooth. Other programs considering distributed planning
and scheduling should learn from the ISS experiences. Also, many of these lessons learned are not
Unique to the area of planning and scheduling systems, and may be applied to other distributed ground
systems that must operate in concert to successfully support space mission operations.

9

The overriding lesson learned is the need to take a global perspective when developing multiple planning
systems to support distributed planning. The entire collection of systems must be considered when
defrning requirements and budgets, approving changes, and coordinating development activities.

4.0 REFERENCES

1. SSP 50501, Pre-Increment Execute Planning Process Definition, Generic, April 2002.
2. Saint, R., “Lessons Learned in Developing an International Planning Software System”, Space Ops

2002, the Seventh International Symposium on Space Mission Operations and Ground Data Systems,
Houston, Texas, October 2002.

3. GSCB 0400, Work Instruction for Integrated Planning System (IPS) Change Request (CR) Protocol
Process, April 2002.

4. SSP 50401-C15, Multilateral Distributed Planning Interface Specification (MUDPIS), Consolidated
Planning System (CPS) Cycle 15, Rev A, February 2002.

5. ExPCP Planning Data Standards - Generic, November 27,2001.
6. SSP 50606, Planning Facility Schedules Document, February 2002.

5.0 ACKNOWLEDGEMENTS

The author would like to thank Ms. Dena Hess of NASA Johnson Space Center for reviewing this paper,
and for providing invaluable inputs on the lessons learned, from the perspective of the Integrated
Planning System (IPS) development organization. Thanks, also, to Mr. Gary Rowe of Teledyne Brown
Engineering, for providing current information related to the ISS distributed planning processes.

6.0 ACRONYMS

COTS
CPS
CSA
ESA
ExPCP
Gr&C
GSCB
ICD
IPS
ISS
IT
JEM
J-EPS
JSC
MSFC
MuDPIS
NASA
NASDA
00s
OPPS
PPS
R4SA
SPOM

Commercial Off-The-Shelf
Consolidated Planning System
Canadian Space Agency
European Space Agency
Execute Planning Control Panel
Groundrules and Constraints
Ground Segm%nt Control Board
Interface Control Document
Integrated Planning System
International Space Station
Information Technology
Japanese Experiment Module
JEh4 Execute Planning System
Johnson Space Center
Marshall Space Flight Center
Multilateral Distributed Planning Interface Specification
National Aeronautics and Space Administration
National Space Development Agency of Japan
On-Orbit Operations Summary
Operations Preparation and Planning System
Payload Planning System
Russian Aviation and Space Agency (Rosaviakosmos)
Scheduling and Planning System

10

C

k
0 1 n

m

Q)

E

0

I

CA
+-,

'd
. t r &
8 2
0 0

I

0 - 2

z
0

I I

Go-

g &
m a)

Y

-4 a # -
m e

0

z
8

0

ce
a
0

-4 c-,

e.

m

c,
8
0

0

I

h

m
c,
E4
d)

0
0

8

E
E 3

0

+ ($J a*
4

O F :
- 0

c
0
?-a

d)
3

3 *rl

0

3
+-r
0 c
tcc
-rl

m c-,
0
cr3 -a
E

C I

.*
m
c, d)
a
5
3
8
h
a
d)

rct
$4
3 h

i3

8

0 c,

m

0
Vl
0

I

o m ClI 0 0

Y
Y e
6
rl
Y

5

3
Q)

CA
8

c, 6 %
a
0

m
d) m
3
0
e

0

0
+I,

+E @

m .
0

8
h
0
ba E

0-

E u
c
0

c
m
c,

8
3
3

U s
0'
.4

d
3

F4
6

8
3
ccc

e
c
3 tcc

3

a c,
5
pc
d)
v3

4 1
0

0
a c,
-4

E

0

c-
cd

.
0
k
E I

8

3
2
0 4-r

U

I d 1 e e

2

2
0

4-r

m
Y

m a
3
5
m

2 i h
h m
c.,

*d
F:
0 a

Tb
F:
6

B.......... ..e... + =
4= 0

e

u3 s u

d)
6
G
c.,

3
8
3
2
0

w
ell

CA
CA

CA
d)

3 a
0
CA

l-4

2

. .

b

(3.40

0 0

c!
d)
bl)
0

I

0

c
2
d)
pI x
d)

v3
v3

c!
6
0

a

4 I
0

Td
d)

I

2
b b

G
0

